Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 27(14): 17382-17392, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32157539

RESUMO

In this study, the hyperthermophilic dark fermentation of onion wastes (OW) for hydrogen production was investigated. OW were used at different proportions in mixed fruit and vegetable wastes (FVW) to evaluate their effect on hydrogen production by Thermotoga maritima. Fermentations were performed in a pH-controlled batch stirred tank reactor (BSTR) using seawater as a simplified reaction medium. Results showed that increasing OW proportions in total fruit and vegetable wastes (tFVW) improved H2 production. Therefore, increasing the OW to tFVW ratio from 0 to 0.8 increased the cumulative H2 production from 109 to 223.6 mmol/L. The H2 productivity was also improved from 7.3 to 28.82 mmol/h.L. In fact, OW contain carbohydrates, sulfur compounds, and other nutrients, which were used as a carbon source and energetic substrate for H2 production by the halophilic bacterium T. maritima in seawater without additional chemical compounds. Then, a H2 yield of 3.36 mol H2/mol hexose was achieved using 200 mL of OW, containing 55 mmol/L of carbohydrates. A concept of H2 production from FVW at high proportions of OW in a simplified reaction medium was proposed. It allowed a H2 yield of 209 LH2/kg volatile solids which could be an interesting future alternative to the current fossil fuel.


Assuntos
Carbono , Cebolas , Reatores Biológicos , Fermentação , Hidrogênio , Enxofre
2.
Waste Manag ; 71: 474-484, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29030117

RESUMO

Biohydrogen production by the hyperthermophilic and halophilic bacterium T. maritima, using fruit and vegetable wastes as the carbon and energy sources was studied. Batch fermentation cultures showed that the use of a culture medium containing natural seawater and fruit and vegetable wastes can replace certain components (CaCl2, MgCl2, Balch's oligo-elements, yeast extract, KH2PO4 and K2HPO4) present in basal medium. However, a source of nitrogen and sulfur remained necessary for biohydrogen production. When fruit and vegetable waste collected from a wholesale market landfill was used, no decreases in total H2 production (139 mmol L-1) or H2 yield (3.46 mol mol-1) was observed.


Assuntos
Eliminação de Resíduos , Água do Mar , Thermotoga maritima , Frutas , Hidrogênio , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...